An Evaluation of the Impact of Leading Pedestrian Interval Signals in NYC

Jeremy J. Sze

Hunter College, The City University of New York

Jeremy.Sze@outlook.com

https://jeremysze.github.io

1. Introduction

visionzeronyc.png nyc_streets.jpg Source: https://www.flickr.com/photos/romankphoto/

Leading Pedestrian Interval Signals (LPIs)

LPIS_visualization.png

Source: https://nacto.org/publication/urban-street-design-guide/intersection-design-elements/traffic-signals/leading-pedestrian-interval/

lpis%20map2.png

NYPD Motor Vehicle Collisions

  • From July 2012 to September 2018
  • Approximately 1.35 million collisions were recorded

Includes:

  • collision outcomes, coordinates, streets, borough, zip code, time, vehicle type, contributing factors

Stratified:

  • 11.00 p.m. to 4.59 a.m.
  • 5.00 a.m. to 10.59 p.m.

dailycollisions.png

dailycollisions_stratified.png

dailypersonsinjuries.png

dailypedestriansinjuries.png

dailycyclistinjuries.png

dailymotoristinjuries.png

dailyall.png

graph_of_time_trend_average_small.png

Hypothesis

The introduction of LPIs reduced collisions and injuries

2. Challenges and Solution

Selective implementation

collision_lpis_overlay.png

Phased introduction

lpis_year_install_2013_2014.png

Phased introduction

lpis_year_install_2013_2016.png

Phased introduction

lpis_year_install_2013_2018.png

Unobserved heterogeneity

satalite_screenshot.PNG

Spatial autocorrelation

NYC_collisions_deciles.png

Spatial autocorrelation

NYC_collisions_deciles_lagged.png

General Binary treatment Difference-in-difference model

  • Simplifying from 25 quarters, we can think of it as there being 3 different groups
  • untreated group $U$
  • early treatment group $k$ that receives treatment at $t^*_k$
  • late treatment group $l$ that receives treatment at $t^*_l$

General Binary treatment Difference-in-difference model

Generalized_DiD.png

Assumptions

  • Unmeasured determinants of the outcomes were time invariant or group invariant
  • Common trends assumption
  • Timing of the treatment implementation must be statistically independent of the potential outcomes distributions, conditional on the group-and time-fixed effects

3. Results

Model Specifications and controls

  • Indicator for when intersections received LPIs intervention
  • Indicator for when Bike route was built
  • Indicator for when Street Improvement was implemented
  • Indicator for when Left Turn intervention was implemented
  • School Zone trends
  • Senior Zone trends
  • Priority Intersections trends
  • Time effects
  • Intersection fixed effects

NYC Fixed effects DiD (Pooled)

NYC_collisions_pooled_visuals.png

NYC Fixed effects DiD (Pooled)

NYC_collisions_pooled_visuals_percent.png

NYC Fixed Effects DiD (Late Night)

NYC_collisions_latenight_visuals.png

NYC Fixed Effects DiD (Non-late night)

NYC_collisions_nonlatenight_visuals.png

Spatial Lagged Overall Impact Fixed Effects DiD (Manhattan)

Manhattan_collisions_overall_visuals.png

Spatial Lagged Overall Impact Fixed Effects DiD (Manhattan)

Manhattan_collisions_overall_visuals_percent.png

Tables and Figures

Table 1: Collisions counts and averages

Categories 2012 2013 2014 2015 2016 2017 2018
A. Collision/Injuries outcomes at Intersections
Collisions 47,611 95,437 94,644 97,792 68,511 78,764 58,942
Injuries of:
Persons 13,336 26,640 24,466 23,160 18,611 22,666 17,513
Pedestrians 3,725 7,555 6,859 6,095 4,821 5,781 3,942
Cyclist 1,355 2,569 2,598 2,597 1,978 2,339 1,766
Motorist 8,250 16,516 15,008 14,468 11,911 14,967 11,706
B. Collision/Injuries counts at Intersections Stratified by LPIs
LPIs Ever == 1 13,068 26,101 25,963 27,244 18,588 20,173 15,034
LPIs Ever == 0 34,543 69,336 68,681 70,548 49,923 58,591 43,908
C. Collision/Injuries averages at Intersections Stratified by LPIs
LPIs Ever == 1 2.43 2.43 2.41 2.53 1.73 1.88 1.86
LPIs Ever == 0 1.68 1.68 1.67 1.71 1.21 1.42 1.42

Table 2: Collisions with longitude and latitude filled


  
2012 2013 2014 2015 2016 2017 2018
Coordinates Filled 85,452 171,917 172,730 182,958 162,745 214,935 157,185
(%) -84.99 -84.39 -83.84 -84.05 -71.44 -93.75 -94.87
Coordinates missing 15,087 31,806 33,296 34,729 65,077 14,327 8,508
(%) -15.01 -15.61 -16.16 -15.95 -28.56 -6.25 -5.13
Total 0 13 60 408 713 825 670

Table 3: Number of LPIs implemented in Quarters and Years


  
2012 2013 2014 2015 2016 2017 2018
Coordinates Filled 85,452 171,917 172,730 182,958 162,745 214,935 157,185
(%) -84.99 -84.39 -83.84 -84.05 -71.44 -93.75 -94.87
Coordinates missing 15,087 31,806 33,296 34,729 65,077 14,327 8,508
(%) -15.01 -15.61 -16.16 -15.95 -28.56 -6.25 -5.13
Total 0 13 60 408 713 825 670

Table 4: Characteristics of the intersections


  
LPIs intersections Control intersections
No. of intersections in New York City 2,689 10,298
School (intersections within 200 feet of school) 201 475
-7.47% -4.61%
Seniors
  (intersections within safe senior zone)
859 1,717
-31.94% -16.67%
Priority Intersection (intersections within 10 ft of signal intersection) 110 109
-4.09% -1.06%

Table 5: Naive regression model - Number of collisions per quarter


  
1 2 3 4 5 6
VARIABLES Poisson OLS Poisson Late night OLS Late night Poisson Non- Late night OLS Non- Late night
Flag LPIs 0.258*** 0.447*** 0.309*** 0.0568*** 0.252*** 0.390***
-0.0253 -0.047 -0.0383 -0.00769 -0.025 -0.0415
Bike route 0.239*** 0.421*** 0.362*** 0.0644*** 0.226*** 0.357***
-0.0219 -0.0412 -0.0301 -0.00594 -0.0216 -0.0363
Street Improvement 0.334*** 0.707*** 0.357*** 0.0772*** 0.332*** 0.630***
-0.0737 -0.182 -0.089 -0.0224 -0.0738 -0.164
Left Turn 0.519*** 1.186*** 0.449*** 0.106*** 0.527*** 1.080***
   -0.0608 -0.176 -0.11 -0.0327 -0.0587 -0.152
Observations 324,675 324,675 324,675 324,675 324,675 324,675
  

Table 6: Fixed effect DiD model - Number of collisions per quarter

1 2 3 4 5 6
VARIABLES Fixed effects
  poisson
Fixed effects
  regression
Fixed effects
  poisson Late night
Fixed effects
  regression Late night
Fixed effects
  poisson Non-Late night
Fixed effects
  regression Non-Late night
Flag LPIs -0.0545*** -0.162*** -0.00245 -0.00039 -0.0604*** -0.161***
-0.0128 -0.0305 -0.0255 -0.00628 -0.013 -0.0279
Bike route 0.0233 0.0521 0.0421 0.0101 0.0217 0.0434
-0.0189 -0.0379 -0.04 -0.00865 -0.0189 -0.0345
Street Improvement -0.0157 -0.209 -0.0133 -0.016 -0.0172 -0.195
-0.0449 -0.148 -0.0661 -0.0234 -0.0458 -0.135
Left Turn -0.140*** -0.806*** -0.133* -0.0683** -0.139*** -0.742***
-0.0369 -0.174 -0.0741 -0.0274 -0.0384 -0.162
Observations 283,550 283,550 242,725 242,725 283,200 283,200
Number of intersection_id 11,342 11,342 9,709 9,709 11,328 11,328
Number of intersection_id 11,342 11,342 9,709 9,709 11,328 11,328
  

Table 7: Fixed effect DiD model - Number of persons injured per quarter

1 2 3 4 5 6
VARIABLES Fixed effects
  poisson
Fixed effects
  regression
Fixed effects
  poisson Late night
Fixed effects
  regression Late night
Fixed effects
  poisson Non-Late night
Fixed effects
  regression Non-Late night
Flag LPIs -0.0993*** -0.0692*** -0.111** -0.0145** -0.0980*** -0.0603***
-0.0213 -0.0134 -0.054 -0.00722 -0.0221 -0.0122
Bike route 0.0169 0.01 -0.00445 -0.000199 0.0193 0.0103
-0.0307 -0.0166 -0.0789 -0.00986 -0.0316 -0.015
Street Improvement -0.0272 -0.041 -0.106 -0.0187 -0.0167 -0.0287
-0.0545 -0.0434 -0.17 -0.028 -0.0557 -0.0388
Left Turn -0.200*** -0.217*** -0.25 -0.0483* -0.193*** -0.185***
-0.066 -0.0623 -0.156 -0.0272 -0.0675 -0.0552
Observations 273,875 273,875 146,725 146,725 272,000 272,000
Number of intersection_id 10,955 10,955 5,869 5,869 10,880 10,880
  
Number of intersection_id 11,342 11,342 9,709 9,709 11,328 11,328
  

Table 8: Fixed effect DiD model - Number of pedestrians injured per quarter

1 2 3 4 5 6
VARIABLES Fixed effects
  poisson
Fixed effects
  regression
Fixed effects
  poisson Late night
Fixed effects
  regression Late night
Fixed effects
  poisson Non-Late night
Fixed effects
  regression Non-Late night
Flag LPIs -0.147*** -0.0337*** -0.0895 -0.00493 -0.153*** -0.0329***
-0.0289 -0.00569 -0.088 -0.00529 -0.0303 -0.00547
Bike route -0.0789* -0.0129* -0.0592 -0.00251 -0.0799* -0.0123*
-0.0419 -0.00749 -0.131 -0.00773 -0.0445 -0.00741
Street Improvement -0.0391 -0.0208 -0.125 -0.00877 -0.0312 -0.0168
-0.0744 -0.0194 -0.236 -0.0159 -0.0849 -0.02
Left Turn -0.302*** -0.147*** -0.199 -0.0198 -0.311*** -0.136***
-0.0718 -0.0264 -0.204 -0.0148 -0.0804 -0.0259
Observations 223,100 223,100 58,475 58,475 218,675 218,675
Number of intersection_id 8,924 8,924 2,339 2,339 8,747 8,747
  
Number of intersection_id 11,342 11,342 9,709 9,709 11,328 11,328
  

Table 9: Fixed effect DiD model - Number of cyclists injured per quarter

1 2 3 4 5 6
VARIABLES Fixed effects
  poisson
Fixed effects
  regression
Fixed effects
  poisson Late night
Fixed effects
  regression Late night
Fixed effects
  poisson Non-Late night
Fixed effects
  regression Non-Late night
Flag LPIs -0.0272 -0.00275 0.0632 0.00269 -0.0376 -0.00357
-0.0418 -0.00431 -0.13 -0.00617 -0.0437 -0.00423
Bike route 0.172*** 0.0157*** 0.0532 0.00229 0.184*** 0.0161***
-0.0643 -0.00585 -0.204 -0.00951 -0.0677 -0.00584
Street Improvement 0.0935 0.00912 0.252 0.0121 0.0788 0.00728
-0.116 -0.0125 -0.33 -0.0163 -0.124 -0.0125
Left Turn -0.206* -0.0309* -0.291 -0.0155 -0.199 -0.0272*
-0.122 -0.0158 -0.339 -0.0186 -0.133 -0.0158
Observations 158,275 158,275 27,575 27,575 152,775 152,775
Number of intersection_id 6,331 6,331 1,103 1,103 6,111 6,111
  
Number of intersection_id 11,342 11,342 9,709 9,709 11,328 11,328
  

Table 10: Fixed effect DiD model - Number of motorists injured per quarter

1 2 3 4 5 6
VARIABLES Fixed effects
  poisson
Fixed effects
  regression
Fixed effects
  poisson Late night
Fixed effects
  regression Late night
Fixed effects
  poisson Non-Late night
Fixed effects
  regression Non-Late night
Flag LPIs -0.0856*** -0.0362*** -0.129* -0.0163* -0.0778** -0.0284***
-0.029 -0.0119 -0.0676 -0.0084 -0.0311 -0.0109
Bike route 0.0359 0.013 0.00446 0.000949 0.0399 0.0127
-0.0419 -0.0149 -0.0974 -0.0118 -0.044 -0.0136
Street Improvement -0.0357 -0.0271 -0.12 -0.0172 -0.0216 -0.0171
-0.0751 -0.0389 -0.219 -0.0322 -0.0758 -0.0337
Left Turn -0.0792 -0.0408 -0.216 -0.0319 -0.0525 -0.0236
-0.103 -0.0518 -0.217 -0.03 -0.107 -0.0461
Observations 254,400 254,400 113,775 113,775 248,025 248,025
Number of intersection_id 10,176 10,176 4,551 4,551 9,921 9,921
  
Number of intersection_id 11,342 11,342 9,709 9,709 11,328 11,328
  

Table 11: Fixed effects DiD Spatial Lag Model of Manhattan Intersections


  
1 2 3 4 5
VARIABLES Number of Collisions Number of Person injured Number of Pedestrians injured Number of Cyclists injured Number of Motorist Injured

  
  Flag LPIs
-0.106*** -0.0643*** -0.0389*** -0.0166*** -0.00897
-0.0377 -0.0176 -0.00894 -0.00569 -0.0137
W.outcome 0.188*** 0.0171** 0.00064 0.0320*** 0.0134*
-0.00628 -0.00709 -0.00714 -0.00705 -0.00713
Impact
Direct -0.106*** -0.064*** -0.039*** -0.017*** -0.009
0.038 0.018 0.009 0.006 0.014
Indirect -0.022*** -0.001** 0 -0.001** 0
0.008 0.001 0 0 0
Total -0.128*** -0.065*** -0.039*** -0.017*** -0.009
0.046 0.018 0.009 0.006 0.014
Observations 68,400 68,400 68,400 68,400 68,400
Number of intersection_id 2,736 2,736 2,736 2,736 2,736
  

Table 12: Fixed effects DiD Spatial Error Model of Manhattan Intersections


  
1 2 3 4 5
VARIABLES Number of Collisions Number of Person injured Number of Pedestrians injured Number of Cyclists injured Number of Motorist Injured
Flag LPIs -0.129*** -0.0644*** -0.0389*** -0.0168*** -0.00893
-0.0387 -0.0176 -0.00894 -0.00572 -0.0138
e.outcome 0.188*** 0.0150** -0.00143 0.0319*** 0.0129*
-0.00639 -0.00713 -0.00718 -0.00707 -0.00714
Observations 68,400 68,400 68,400 68,400 68,400
Number of intersection_id 2,736 2,736 2,736 2,736 2,736
  

Table 13: Fixed effects DiD Non-Spatial Model of Manhattan Intersections

1 2 3 4 5
VARIABLES Number of Collisions Number of Person injured Number of Pedestrians injured Number of Cyclists injured Number of Motorist Injured
1.flag_LPIS -0.089 -0.0644*** -0.0389*** -0.0166** -0.00906
-0.0679 -0.0208 -0.0109 -0.00662 -0.0153
bike_route_tv 0.177** 0.0265 -0.011 0.00352 0.0361*
-0.088 -0.025 -0.0128 -0.00735 -0.0189
flag_street_improv -0.453 -0.0712 -0.0457 0.00515 -0.0297
-0.301 -0.0638 -0.0301 -0.0198 -0.0461
flag_left_turn -0.999*** -0.291*** -0.168*** -0.0284 -0.0966
-0.328 -0.0924 -0.0494 -0.025 -0.0604
Observations 68400 68400 68400 68400 68400
R-squared 0.089 0.016 0.015 0.01 0.006
Number of _ID 2736 2736 2736 2736 2736

References

Ajilore, O. (2015). Identifying peer effects using spatial analysis: the role of peers on risky sexual behavior. Review of Economics of the Household, 13(3), 635–652. https://doi.org/10.1007/s11150-013-9235-4 Anselin, L. (1988). Spatial Econometrics: Methods and Models. In Studies in Operational Regional Science. Retrieved from https://www.springer.com/us/book/9789024737352

Anselin, L., & Griffith, D. A. (1988). Do spatial effects really matter in regression analysis? Papers - Regional Science Association, 65, 11–34.

Appendix A - Crash Cost Estimates by Maximum Police-Reported Injury Severity Within Selected Crash Geometries, October 2005 - FHWA-HRT-05-051. (n.d.). Retrieved March 16, 2019, from https://www.fhwa.dot.gov/publications/research/safety/05051/06.cfm

Fayish, A., & Gross, F. (2010). Safety Effectiveness of Leading Pedestrian Intervals Evaluated by a Before-After Study with Comparison Groups. Transportation Research Record: Journal of the Transportation Research Board, 2198, 15–22. https://doi.org/10.3141/2198-03

Goodman-Bacon, A. (2018). Difference-in-Differences with Variation in Treatment Timing (No. w25018). https://doi.org/10.3386/w25018

Goughnour, E., Carter, D., Lyon, C., Persaud, B., Lan, B., Chun, P., … Signor, K. (2018). Safety Evaluation of Protected Left-Turn Phasing and Leading Pedestrian Intervals on Pedestrian Safety (No. FHWA-HRT-18-044). U.S. Department of Transportation.

Goughnour, Elissa, Carter, D., Lyon, C., Persaud, B., Lan, B., Chun, P., … Signor, K. (n.d.). Safety Evaluation of Protected Left-Turn Phasing and Leading Pedestrian Intervals on Pedestrian Safety. Retrieved from https://www.fhwa.dot.gov/publications/research/safety/18044/18044.pdf

Hauer, E., Harwood, D. W., Council, F. M., & Griffith, M. S. (2002). Estimating Safety by the Empirical Bayes Method: A Tutorial. Transportation Research Record: Journal of the Transportation Research Board, 1784(1), 126–131. https://doi.org/10.3141/1784-16

Hubbard, S. M. L., Bullock, D. M., & Thai, J. H. (2008). Trial Implementation of a Leading Pedestrian Interval: Lessons Learned. ITE Journal, 78(10). Retrieved from https://trid.trb.org/view/873717

King, M. R. (2000). CALMING NEW YORK CITY INTERSECTIONS. Transportation Research Circular. Presented at the Urban Street Symposium Transportation Research Board; American Association of State Highway and Transportation Officials; American Society of Civil Engineers; Federal Highway Administration; Institute of Transportation Engineers; and National Association of County Engineers. Retrieved from https://trid.trb.org/view/686665

LeSage, J., Pace, R. K., & Pace, R. K. (2009). Introduction to Spatial Econometrics. https://doi.org/10.1201/9781420064254

Matyas, L., & Sevestre, P. (Eds.). (2008). The Econometrics of Panel Data: Fundamentals and Recent Developments in Theory and Practice (3rd ed.). In (3rd ed.). Retrieved from https://www.springer.com/us/book/9783540758891

NYC DOT. (2014). Vision Zero Action Plan 2014. Retrieved from http://www.nyc.gov/html/visionzero/pdf/nyc-vision-zero-action-plan.pdf

NYC DOT. (n.d.). NYC DOT - Data Feeds. Retrieved February 20, 2019, from https://www1.nyc.gov/html/dot/html/about/datafeeds.shtml

NYC DOT - Leading Pedestrian Interval Signals. (n.d.). Retrieved December 17, 2018, from http://www.nyc.gov/html/dot/html/infrastructure/leading-ped-intervals.shtml

NYC Open Data, O. (2018, December 2). NYPD Motor Vehicle Collisions | NYC Open Data. Retrieved December 2, 2018, from /Public-Safety/NYPD-Motor-Vehicle-Collisions/h9gi-nx95, /Public-Safety/NYPD-Motor-Vehicle-Collisions/h9gi-nx95

NYS DMV. (n.d.). Motorist accident reports | New York State Department of Motor Vehicles. Retrieved February 20, 2019, from https://dmv.ny.gov/dmv-records/motorist-accident-reports

Open Data Law - DoITT. (2019, February 16). Retrieved February 16, 2019, from https://www1.nyc.gov/site/doitt/initiatives/open-data-law.page

Pécheux, K., Bauer, J., & McLeod, P. (2009). Pedestrian Safety Engineering and ITS-Based Countermeasures Program for Reducing Pedestrian Fatalities, Injury Conflicts, and Other Surrogate Measures Final System Impact Report. Retrieved from Science Applications International Corporation (SAIC) website: https://safety.fhwa.dot.gov/ped_bike/tools_solve/ped_scdproj/sys_impact_rpt/sys_impact_rpt.pdf

Rhee, K.-A., Kim, J.-K., Lee, Y., & Ulfarsson, G. F. (2016). Spatial regression analysis of traffic crashes in Seoul. Accident Analysis & Prevention, 91, 190–199. https://doi.org/10.1016/j.aap.2016.02.023

Sharma, A., Smaglik, E. J., Kothuri, S., Smith, O., Koonce, P., & Huang, T. (2017). Leading pedestrian intervals treating the decision to implement as a marginal benefit–Cost problem. Traffic Signal Systems, Volume 2, 96–104. https://doi.org/10.3141/2620-09

Tchoukanski, I. (n.d.). Thiessen Polygons. Retrieved March 4, 2019, from https://www.ian-ko.com/ET_GeoWizards/UserGuide/thiessenPolygons.htm

Van Houten, R., Retting, R. A., Farmer, C. M., & Van Houten, J. (2000). FIELD EVALUATION OF A LEADING PEDESTRIAN INTERVAL SIGNAL PHASE AT THREE URBAN INTERSECTIONS. Transportation Research Record, (1734). Retrieved from https://trid.trb.org/view/671706

Wing, C., Simon, K., & Bello-Gomez, R. A. (2018). Designing Difference in Difference Studies: Best Practices for Public Health Policy Research. Annual Review of Public Health, 39(1), 453–469. https://doi.org/10.1146/annurev-publhealth-040617-013507